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STRESS-INDUCED ROTATION OF POLARIZATION
DIRECTIONS OF ELASTIC WAVES IN SLIGHTLY
ANISOTROPIC MATERIALS
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Abstract—In this paper the effects of the uniformly applied stress and slight anisotropy of materials on the
propagation of elastic waves are theoretically studied. Since real polycrystalline materials are more or less aniso-
tropic because of their textures, examining the effects of slight anisotropy is important to establish the method of
experimental stress analysis called acoustoelasticity. After deriving the acoustical tensor for the general case of
slight anisotropy, the case of slight orthotropy is discussed in detail as a frequently encountered case. The im-
portant result is such that the polarization directions of shear waves rotate largely as the uniformly applied
stress varies with the principal directions of the stress constant. Such large rotation of the polarization directions
does not occur in materials of isotropy or ordinary anisotropy. The effects of this rotation on the acoustical
birefringence of two polarized shear waves are also discussed.

1. INTRODUCTION

ELASTIC waves in finitely deformed elastic materials have been studied by many workers.
Especially the case of uniform deformations has been discussed thoroughly from the
theoretical view point [1-4] and in parallel with the theoretical works the experiments for
determining so-called third-order elastic constants of materials by means of the ultrasonic
waves have been carried out [5-7].

Furthermore the application of the birefringence of two polarized ultrasonic shear
waves to the experimental stress analysis was proposed as acousto—lasticity by Benson
and Raelson [8] and has been studied in [9-13]. Though it is attractive that this method
involves the possibility of nondestructive three-dimensional stress analysis, there are
several problems to be cleared such as the effects of nonuniformity of deformations, some
of which were discussed by one of the authors [14], and those of slight anisotropy of
materials, which we consider in this paper.

A polycrystalline material is usually considered isotropic when its crystal grains are
arranged randomly. However if the grains cluster around certain orientations and so the
material has a texture or preferred orientation, it reveals slight anisotropy. Various kinds
of textures are caused after plastic deformations, e.g. cold-working and heat treatments,
e.g. annealing and most polycrystalline aggregates should be considered to have textures
and so more or less possess slight anisotropy intrinsically. Though such slight anisotropy
can be neglected in usual elastic deformations, it produces a triad of the polarization
directions of elastic waves in the material and the acoustical birefringence of two polarized
shear waves is observed by high frequency waves. When such a slightly anisotropic material
is loaded, another kind of slight anisotropy is induced by the stress. Since both kinds of
anisotropy are weak, the polarization directions rotate largely during the loading which
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unchanges the principal directions of the stress, for example the loading in a uniaxial tension
test.

On the contrary, there is only a little rotation of polarization directions in an ordinary
anisotropic material [15] and no rotation of them in an isotropic material [12] during such
loading. Due to such large rotation, the relation between the applied stress and the velocities
of two polarized shear waves or the phase difference of them becomes a little more com-
plicated than those reported in {12, 15]. Since in two-dimensional acoustoelasticity we
intend to determine the stress state from the measurement of the polarization directions
and the phase difference of two polarized shear waves, it is necessary to recognize the
existence of such rotation of the polarization directions in slightly anisotropic materials
to which most polycrystalline aggregates belong.

After deriving the acoustical tensor for the general case of slightly anisotropic materials
in Section 2, we confine ourselves to the case of slightly orthotropic symmetry as a fre-
quently encountered case of slight anisotropy and consider the polarization directions, the
phase difference and the acoustical birefringence in Sections 3--5.

2. ACOUSTICAL TENSOR FOR SLIGHTLY ANISOTROPIC MATERIALS

In [12] the fundamental equation of the superposed infinitesimal elastic wave was

obtained as
3w, 0 ow
e |8t | = oW, 21

" 9x,0% +8xl [ klrs éxs] P¥ 21)

where
p ) dx dx Ox, 0x,

S, =X . . ,
s py OE0E,, 0X, 0X, 0X, 0X,

2.2

In equations {2.1) and (2.2) X, and x, are coordinates of a material point in the undeformed
and the deformed state respectively referred to the same rectangular Cartesian coordinate
system and the usual summation convention is used. The deformed state on which the
infinitesimal wave w, is superposed is described by the displacement vector u,, the strain
tensor E, (referred to the undeformed state) and the stress tensor ¢, (referred to the de-
formed state). Also p, and p are the densities of the undeformed and the deformed state
respectively and L is the strain energy function. We note that equation (2.1) was derived
under the assumption that the second and the higher order terms of the displacement
gradient dw, /80X, were negligible. Furthermore we approximate equation (2.1) by ne-
glecting the second and the higher order terms of the displacement gradient (du,/0X)
{x, = u(X )+ X,) as in [14, 15].
Then the strain energy function Z can be expressed as

1 1
Y= 'é’,cijklEijEk! +§CijklmnEijEklEmn (2.3)
and so we have
62
Z Cijkl + Ci)’kimnEnm N (24)
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where C;;, and Cj,,,, are the second- and the third-order elastic constant. Using equation
(2.4), 0x,/0X, = 0,y + Cu/0X, and p = po(l + E,) to equation (2.2) we have

du, Oty 6u, Ou Ju

Sklrs = Cklrs + Eijklrs aX mlrs aX Ckmrs aX’ Cklms aX

S Cklrm) +Cklrsmn mn» (25)

where E,, can be replaced by the linear strain tensor
Ou, Oy,
b= i 2 2
A slightly anisotropic material is characterized by
Cijur = 4005+ 0301+ 640 3) + Cljy 27
and
Cljklmn =V Ouéklémn + V2 [511(5km51n + 5knolm) + 5kl(51m Jjn + 51716):") + 5mn(5ik5jl + 5i15jk)]
+ V3[0:1(0 ;mO1n + 00 1m) + 0 GOk + 8 Okim) + 0:t{ 0 junOpn + 0 O
+ 5jk(5im61n + 6in51m)] + C:'jklmn’ (28)
where

’
ijklmn

Ve

« 1. 2.9)

« 1, ‘

When Cijy = Cijmn = 0, equations (2.7) and (2.8) represent the elastic constants of an
isotropic material [2].

The third-order elastic constants of an isotropic material v,, v, and v, are related to
the Murnaghan’s constants /, m and n [14] by

vy, =20—2m+n, v, = m—g, vy = g. (2.10)
Then taking the condition (2.9) into account, equation (2.5) can be written as
Stirs = Skirs+ Skurs» 2.11)
Spirs = A60,5+ (81615 + Os01), (2.12)
Sktrs = Chars+ E;[2010,5+ 10y, 015+ 64501, + 2MO4E,; + 6,,E)
+ 201 E s+ 01 Erg + 04 sE s + 0, E ) + CrtpamnEorans (2.13)
where
Cutrsmn = Cutrsmn = Citrsmn- (2.14)

If we consider plane waves propagating through a uniformly deformed material, we
may assume

w, = W, ek, (2.15)
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W,, k, v and n; being the constant amplitude vector, the wave number, the propagation
velocity and the unit vector normal to the wave surface, respectively. Then equation (2.1)
becomes

(tlmnlnmékr+ Sklrsnlns)VVr = P172Wk~ (216)

or
[(AE ;6 1 + 21E )14 + (Skirs — E jSuir)ing + Sy st W, = pov* W, . (2.17)
Equation (2.17) is obtained from equation (2.16) by p = po(1 +Ej). t,,, = LE;;0,,,+2uE,,.
equation (2.11) and our rule of neglecting the small quantities of higher order. If we put
Ay = A%+ Ay,
A} = S{hn,, (2.18)
Ay = (AE;0 1, + 21E )00, 00 + (Stirs — E iSoisnn,.

equation (2.17) becomes
(A= pov*0,, )W, = 0. (2.19)

The tensor A,, is called the acoustical tensor for the waves with the propagation direction
n; [16] and determines por® and the polarization directions of that kind of waves as the
eigenvalues and the eigenvectors respectively.

Since the case of slight orthotropy is considered in the following sections, we specify
Cijw: for such symmetry here. An orthotropic material is such that its elastic properties are
symmetric with respect to three orthogonal planes. So when we choose the coordinate
axes to be oriented along the directions of symmetry, Cjj, is in the Voigt notation [17]

Ch Ch Oy
Cia Ch s 0
o= B , (220)
44
0 55
Cée

where |C;/ul « 1.

3. SLIGHTLY ORTHOTROPIC MATERIALS

Though the eigenvalues and the eigenvectors of 4,, can be calculated for the general
case by the usual perturbation method [15], we confine ourselves to the case in which one
of the directions of orthotropic symmetry and one of the principal directions of the stress
are coincident with the propagation direction of the waves. (Though the principal directions
of the stress are slightly different from those of the strain on account of the existence of
slight anisotropy, this difference can be neglected in our approximation. Therefore we
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may use the principal directions of the stress and those of the strain interchangeably here-
after.) The above confined case is the one which is frequently encountered in the experi-
ments and reveals the effects of slight anisotropy and the stress on the waves most distinctly.

We choose the coordinate axes so that the x;-direction is oriented along the above
stated common direction and the other two axes along the other two directions of ortho-
tropic symmetry. Then we have

n, =n, =0, ny =1, (3.1)

E,,=E; =0, E,y = E;, (3.2)

and can use the expression (2.20). Using equations (2.8), (2.12}+2.14), (3.1) and (3.2) to

(2.18), we have
AR, = (A42p)0;39,3 + 10,501,015 (3.3)
Ay = [Ch333+(A+ v +20))E;;+ {20244 50) + 4(v; +2v3)  E316,36,3

F{(A+Vv3)E;;+ 22+ v3)E3 0,5

+(C1313021051 + C2323042052) + 21+ v3)E 40,0, (34)

where Greek indices 2 and f take the values 1 and 2, and in the Voigt notation C%5;3 = Cj3,
C'3,3 = Css and (5,3 = Cy,. Therefore one of the eigenvalues of A4,, is

Ay = (A+2W+[Ch333+(A+v, +2v)E;;+ {2244 5u) + v, + 2v5)} E;] (3.5)

and the x;-direction is the corresponding eigendirection. Therefore the velocity v; of the
longitudinal wave is

A 1 1
J) =V, (1+2( +2u){C3333+(i+v1+2v2)Ejj+2[(2l+5;1)+2(v2+2v3)]E3} \

U3 =
Po

where V, = \/{(A+2u)/po] is the velocity of the longitudinal wave in the undeiormed
isotropic material. The other two of the eigenvalues and corresponding eigendirections
are those of the two-dimensional tensor A,;:

Ay = AR+ Ay,

AZy = pby. (36)

Arp = [A+v2)E;j+2Qu+V3)E;]0,5+ C 313051051 +Ch3230,205, + 2+ V3)E,;4.
Due to the existence of the last term in the right hand side of (3.6),, the x, - and the x,-axis
are not along the principal directions of A,;. Since 4, is real and symmetrical, its principal
directions are orthogonal to each other and its eigenvalues are real. The angle 6 between

one of the principal directions, that is, polarization directions of the shear waves and the
X,-axis is given by

24
tan 20 = 2 - 2E+; , 3.7)
A1 —A,;, C+(E| —E;)
where
" 1313— C2323 _ Css—Caa (3.8)

2+ vs) B 2u+v,) '
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The characteristic equation which determines the eigenvalues A4, of 4, is
—[2u+Vv3)(Eyy +Ep)+(Crsis+Chspa)ld
+[2u+v3)E  +Cl515] [2u+v3)Ep + Chsp3] —4u+v3)’ES, = 0, (3.9)
where
A= A—[p+A+v)E;+22u+v,)E,]. (3.10)
Therefore we have
Ay = p+(A+pu+vy+vi)E;; +Gu+vi)E,
+:HC313+Chsz3) T lu+vsl . J{[C+H(E; —Ep,))* +4ET,}. (3.11)
If ¢ is the angle between one of the principal directions of the strain and the x,-axis, the
following relations between E,; and the principal strain E, hold:
Ey, = 3(E,+E;)+3(E, — E;) cos 2¢,
E,;, = HE, +E;)—3E,—E,)cos 2¢, (3.12)
E,, = 3(E, ~E,)sin 2¢.
For definiteness, we assume without loss of generality that the eigenvalues A, of A4,, and
E, of E,, correspond to the eigendirections 0 < § < n/2 and 0 < ¢ < n/2, respectively.
Using the relations (3.12) to equations (3.7) and (3.11) we have

(E,—E,)/C] .sin2¢

tan 26 =
an 1 +[(E, —E,)/CT].cos 2¢"

(3.13)

and

Ay = p+A+u+v,+v3)E; +Bu+v3)E;

— _ 2
EZ) cos 2¢ + (EIC,EZ) } (3.14)

Since A4,/p, gives the square of the velocity v, of the polarized shear wave, the phase
difference @ of the two polarized shear waves/unit length is given by

E
+3(C313+Chaa3) £ l(+v3) . C ~\/|:1+2( .

O = w(i_i) =T 2w3( v2) = 3(A —4,), (3.15)

v, v U%

where w is the angular frequency of the waves and

0 \/( ) (l al) Ol < )‘
PO 0

® = i(ﬂ) ,|(1+v3) o _\/|:1+2(E1_E2) .cos 2¢+_(E1_,E2)2], (3.16)
v u C’ C

where the positive or negative sign corresponds whether 4, > 4, or A, < A4,.
Hereafter we suppose that the material is loaded so that the principal directions of the
strain do not change as in a usual uniaxial tension test. If the principal directions of the
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strain are coincident with the directions of orthotropic symmetry, that is ¢ = 0, we have
from relations (3.13) and (3.16)

0 =0,

o~ () 3 o)

which shows that the polarization directions are coincident with the principal directions
of the strain during the loading and the phase difference is the simple sum of the con-
tributions from the intrinsic orthotropy and the stress-induced orthotropy.

If the material is isotropic, 1.e. C' = 0, then we have

0=¢

(3.17)

k]

® (3.18)
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where ¢, is the principal stress. Relation (3.18) is called the stress—acoustical law. The
polarization directions are also constant during the loading (¢ = const.).

The general behaviors of the rotation of the polarization directions and the change of
the phase difference are shown in Figs. 1 and 2. The polarization directions rotate largely
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FI1G. 1. Variation of 8 with y = (E, — E,)/C". In this figure 8 is the angle between the x,-axis and the polar-
ization direction which is coincident with the x,-axis when y = 0. Since this definition of § makes easier
to see the figure than that in the article, i.c. 0 < 6 < =/2, the former is adopted here exceptionally.
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Fi1G. 2. Variation of ® with y = (E, — E,)/C".

from those of orthotropic symmetry [(E, — E,)/C’ = 0] towards those of the principal
axes of the stress [|(E, — E,)/C’| » 1] during the loading [that is, with the increase of
|(E{— E,)/C"]. Since within the elastic range |(E, —E,)/C’| does not exceed the value 1
extremely, the latter directions can not be reached. Such large rotation of the polarization
directions as this is due to slightness of orthotropy and so it does not occur in the materials
of ordinary anisotropy. Even if these materials are stressed, the polarization directions
deviate only a little from those determined by the intrinsic anisotropy. Also in the isotropic
materials they do not deviate at all as shown in equation (3.17).

4. THE AMPLITUDE OF A SHEAR WAVE-ECHO PATTERNS

The case is the same as that treated in Section 3, that is, the coordinate axes are oriented
along the directions of orthotropic symmetry and the x,-axis is also along one of the
principal directions of the stress. When on the plane x; = 0 the uniform displacement
vector w, is given by

w, = W.cos . cos wt,
w, = W.sin . cos wt, 4.1)
W3 = 0,

where W is its magnitude and ¥ is the angle between this vector and the x,-axis, the plane
shear waves propagate into the positive and the negative direction of the x;-axis. We
consider one of them, the shear wave propagating into the positive x;-direction. Then its
displacement at a point x5 along the direction making the angle y with the x,-axis is
given by

w(xs3, t) = wi(xs, t). cos(y —0)+ wi(x;, t) . sin(yy — ), 4.2)
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where 0 is also the angle between one of the polarization directions and the x,-axis and
w, and w, are components of the displacement vector along the polarization directions
(Fig. 3). Since as shown in Section 3 the components w/, and w’, are two waves with the
velocities v, and v,, respectively, we have

wi(xs, 1) = W. cos(t *9).cos[m, (t—«i;ﬁ)],
l (4.3

whixs, 1) = W.sin(y —6) .cos[w. (t~zc—9—)].

5]

v, and v, are given from equation (3.14). From equations (4.2} and (4.3)

wixs, 1) = W{cosz(l//—ﬂ).cos[m(!—ggﬂ+sin2(¢—9).cos[w(t—%)]}. (4.4)

1

2

direction of
orthotropic symmetry

FIG. 3. Three triads of directions.

When we write equation (4.4) as
w(x;,t) = W.r.cos(wt—1{), 4.5)
we have
r = r(x;) = [1—sin? 2(y — 0) . sin?(3® . x,)]%,

tan®(y —0) . sin(® . x,)
1 +tan*(y —6) . cos(® . x;)

using the phase difference ®/unit length given by equation (3.15) and so equation (3.16).
W . r(x3) = w(X3)nax iS the amplitude of the displacement w(x,, t) along the direction .
To proceed to the explanation of formula (4.6) we briefly refer to what kind of experi-
ments gives the above derived amplitude w(x,},,., . Consider a uniaxial tension or compres-
sion test in which the test piece is a slightly orthotropic plate with a thickness d and more-
over the direction of the thickness is along one of the directions of orthotropic symmetry

(4.6)

{=1{x;) = tanﬂ[
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(x;-axis). In order to generate a shear wave pulse with the main frequency component
w/2n and detect its reflected pulses, we set a Y-cut quartz crystal on the plane x; = 0 so
that its direction of vibration makes the angle y with the x,-axis (Fig. 4). Then for a certain
load we obtain a pattern of successively reflected wave pulses on the screen of the oscil-
loscope. This pattern is called the echo pattern and is such as Fig. 5. The observed height
of the n-th reflected pulse is proportional to the amplitude of the displacement along the

direction of load

—

quartz

test
piece

F1G. 4. The acoustoelastic experiment under uniaxial stress.
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FiG. 5. An echo pattern in acoustoelasticity.
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direction  at x5 = 2nd (n = 0, 1,2, ...). When we draw the curve connecting the tops of
the observed pulses (the dotted line in Fig. 5) and the proportionality factor is adequately
chosen, this curve gives the relation between r and x5. (In reality the loss in reflecting on
the surfaces of the specimen and that due to scattering on the grain boundaries etc. decrease
the echo pulse heights. However we do not consider these losses in this paper, so the cause
of the change of the echo pulse heights is simply the acoustical birefringence [18].)
Returning to formula (4.6), we first consider the case ¢ = 0 (the principal directions of
the stress are coincident with the directions of orthotropic symmetry). Then formula (4.6)

becomes
i —
r=cos| 22 [1473) o (14 B2 E 4.7)
\ 20, U C

by using equation (3.17} and putting = n/4. The change of the echo pattern (the r-x,
curve} with the increase of the value {E, —E,)/C’| is shown in Figs. 6{a) and (b) for
(E,—E,)/C" = 0 and (E, —E,)/C’ < 0, respectively. In Fig. 6(a) the phase difference in-
creases monotonically with (E, — E;)/C’ and so the period of the curve becomes shorter
and shorter, while in Fig. 6(b) the period increases infinitely and thenceforth decreases as
in Fig. 6(a). The echo pattern with an infinite period is the straight line with a height 1
and shows that in this stress state the intrinsic slight orthotropy is counterbalanced by the
stress-induced orthotropy and the material is two-dimensionally isotropic. Of course, this
is made possible by the choice ¢ = 0. Another kind of curve which gives the relation

{a)

ey

X

FiG. 6(a). Change of the echo pattern for ¢ = 0°, ¢ = 45° and y = (E, ~ E,)/C’ > 0 as y increases.

0

(b)

2

>
Xs
F16. 6(b). Change of the echo pattern for ¢ = 0° ¥ = 45° and y = (E,— E,)/C’ < 0 as |y} increases.

0
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between r and (E, — E,)/C’ at a certain point x5 is important to analyse the stress. [t is
shown in Fig. 7. Its period is inversely proportional to x;.

Secondly for the case ¢’ = 0 and ¥ = /4 we show the echo pattern and the r —(E, — E,)
curve in Figs. 8 and 9, respectively. In this case we have

wx v
cos[zv: 1+—3) -(El_EZ)] .

Interpretation of these figures is similar to the above.
Finally for the general case we have to apply equation (3.16) to equation (4.6). Putting
¥ = ¢ = n/4 for brevity, we have

' — 2 %
= (1—cos?20.sin?{C22 (1423 .. [|1+ E—,EE . (4.9)
2v, U C

(4.8)

P o=

a \
0 _ E- E:

¢’
F1G. 7. Variation of r with y = (E, ~ E,)/C’ when ¢ = 0° and ¢ = 45°. When

WX31 jval
pn < -217_1(1 +7) .

Cl<p+in  (p=012..)

curves a and b correspond to v; > 0 and v, < 0, respectively. Also when

X3

(HI\:l) C,i}«pﬂ)x p=012..)

curves a and b correspond to vy < 0 and v3 > 0, respectively.

(p+’)r:<w

e

0 X3

FiG. 8. Change of the echo pattern for C’ = 0 and y = 45° as |y} = |(E, — E,)/C’| increases.
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—

0 _ ErEa
y=—c

F1G. 9. Variation of r with y = (E, — E,)/C" when C' = 0 and ¢ = 45°.

Since cos? 20 is expressed as

1 1
220 = = 4.10
€08 1+tan’20  1+[(E,—E,)/CT (+.10)
by equation (3.13), relation (4.9) becomes
. |:1 _sinz(wx3/2170 (A +va/p) . C L J{T+(E, —Ez)/C']Z}):l* @.11)
1+[(E, —E))/CT? ' '

The echo pattern and the r — [(E, — E,)/C’'] curve are shown in Figs. 10 and 11. They differ
from and are more complicated than the curves in two special cases shown above. Therefore
it can be concluded that the effects of large rotation of the polarization directions due to
the applied stress are very important in slightly anisotropic materials.

¥

A
10
08~
of-
ou- 142 = 5x10°

w=5x10° rad./sec,
0z- Ve=3X10" cm/sec,
i 1 i 1 1 1 i 1 =~
0 2 4 6 8 10 2 7, em)

F1G. 10. Change of the echo pattern with |y| = |(E, — E,)/C'| when ¢ = ¢ = 45°.
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0k (1+%)-c'\=5x1o'3

w=5x10° rad,/sec.

oz
V,=3x10° cm/sec.
! 1 1 Y 1 —>
0 1 2 3 4 5 M

FiG. 11. Variation of r with |y = |(E, — E,)/C’| when ¢ = ¢ = 45°.

5. DISCUSSION

As an example of slightly orthotropic materials we refer to a relled plate of a metal. It
has a texture in which most grains arrange with certain crystallographical axes parallel to
the direction of rolling, and this direction and that orthogonal to it in the plane of the
plate are two directions of orthotropic symmetry. This kind of orthotropy was studied in
[13, 19, 20] for the rolled plates of iron and aluminium by using the ultrasonic shear waves
and from those results we may suppose that (Av),, the difference of the velocities of the
two shear waves polarized by this orthotropy, is at most about 1 per cent of the velocity
vo = /(1/po) of the shear wave in the corresponding isotropic material. [Of course, the
ratio (Av),/v, depends on the properties of the material and its reduction in thickness in
rolling.] Then taking (Av)y/v, = 5 x 1072 as a representative ratio and assuming the case
in relation (3.17), we compare the phase differences @, due to the intrinsic orthotropy and
®, due to the applied stress. From (3.17) ®; and @, are

O = +|D,+ D,
q)i:_a_)'(l_kfé)_c'zg.(g/i?;g‘i)‘ (5.1)
Vo U Vo 2p

Since




Stress-induced rotation of polarization directions of elastic waves in slightly anisotropic materials 113

we have
1®] = 5x10-3.(3’_) and | =2 %)= 5x1073 (52)
Uy 2/1
(5.2), suggests
Cosl |G| (5.3)
2 2

though this cannot be strictly obtained from (5.2). So we may assume that the condition
of slightness of orthotropy (2.9) is satisfied for these rolled plates.

Though for the polycrystalline iron and aluminium the authors have not known the
definite experimental values of the third-order elastic constant v; = n/4, Seeger and Buck
[21] gave n = —15:2x 10*? dyn/em? for iron. Adopting this value for n and assuming the
magnitude of the strain as |E, — E,| = 1073, we have

| = 37x1073. (5‘3) (5.4)
0

From (5.2}, and (5.4) it proves that the intrinsic slight orthotropy and the stress-induced
slight orthotropy equally contribute to the phase difference ®. Though this comparison is
made in the case when the directions of orthotropic symmetry are along the principal
directions of the stress and so the polarization directions do not rotate, the same is con-
cluded for the general case, in which we cannot divide @ into @, and ®, as shown in (3.16).
Therefore it is essential in interpreting the experimental data to recognize that the polar-
ization directions rotate largely during the loading.

Finally it should be noted that the residual stress affects the propagation of the elastic
waves as well as the intrinsic slight anisotropy and the applied stress, and so these three
kinds of factors have to be taken into account in applying the method of acoustoelasticity
to the real materials [13].
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A6cTpakT—B pabote uccneaytorcs Teopetudecku 3h¢eKThl PAaBHOMEPHO TPUIIOKEHHBIX HAMPXXEHUH U
JIErKO#l aHW30TPONKMH MAaTEPUAJIOB HAa paCIpocTpaHeHue ynpyrux BosiH. [Toka aelcTBUTENIbHbIE ONMKPHUC
TaJJIMYECKUE MaTepHaIbl 60Jiee Uik MEHEE AHU3OTPOIHBIE, B BUAY MX CTPYKTYPbI, TO[AA SABJAETCH BAXKHBIM-
uccnegosaHue 3QPEKTOB JIETKOM AHU3OTPOIUM, C LENbbl OfPEJENeHUs] METOJA 3KCIEPUMEHTAIBHOTO
aHanM3a HampsHKeHWH, HA3BAHHOLO AKYCTO-YNPYroctbio. ITocsie BbIBOAA aKyCTHYECKOrO TeH3opa Ui
oB11ero cinyyas nerkoil aHU30TPONKM, UCCIENYeTCA MOAPOBHO cnyyail Nerkoi OpTOTPONINK, B CMBICIIE YaCTO
BCTpeYarolero cityyast. CaMbIM BaXXHbIM DE3y/IbTATOM SIBASETCA TO, YTO HANPABIEHHUA MOJIAPU3ALNK BOJIH
casura obpatilatorcst 6onee, YeM UIMEHSETCH PABHOMEPHO [PUIIOKEHHOE HANPSIKEHUE, B 3aBUCUMOCTH OT
rIaBHbIX HAMIPABJIEHKI MOCTOAHHOM Hanpskenusi. Tak 6oJiblIoe BpallEHUE HAMPABIEHHNA TIOAAPU3ALUY HE
BCTPEYAETCA B M3OTPOIMHBIX MaTepuasax, Win ¢ oObIKHOBEHHOM aHu3oTponuei. HMccneayerca, Takxke,
3¢ dexT ITOro BpalLeHUs HA aKYCTMYECKOE ABOMHOE JIyYENpPENoMIIEHHE OBYX MOJSAPUINPOBAHHBIX BOJIH
cABHTa.



